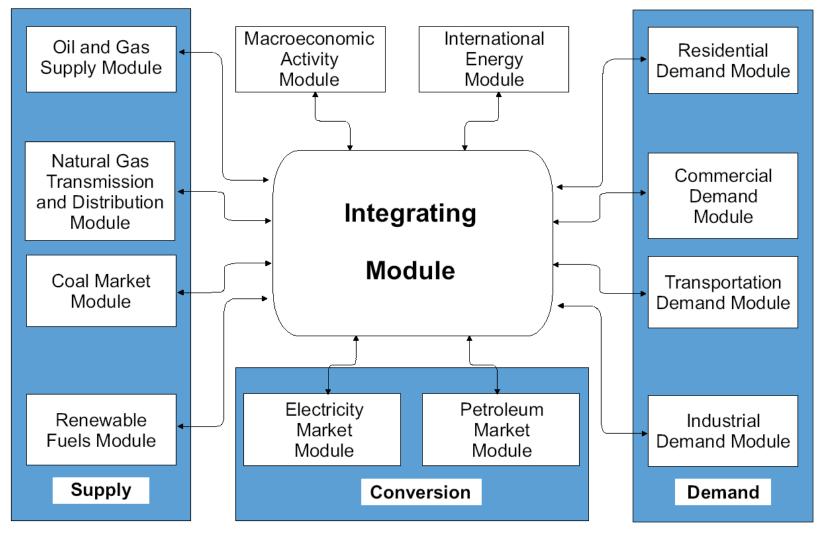
NEMS as a policy analysis tool

ORNL/Georgia Tech Working Meeting: NEMS Capacity for Energy End-Use Analysis February 26, 2013 / Washington, DC

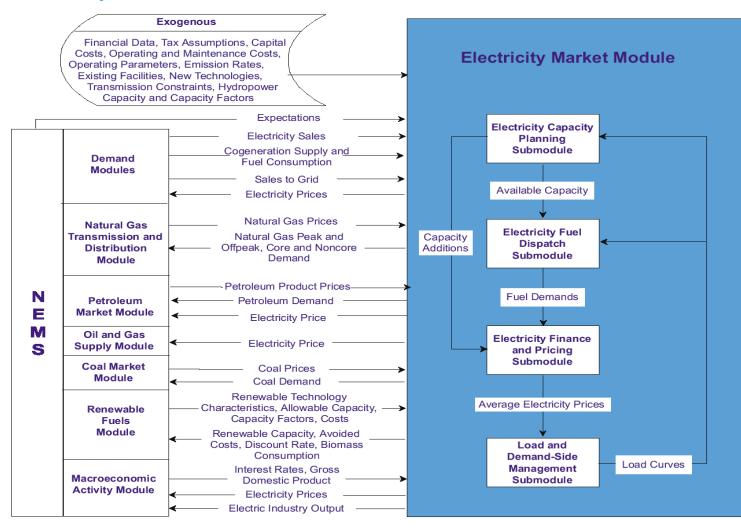
J. Alan Beamon, Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis

Erin Boedecker, Team Leader, Buildings Energy Consumption and Efficiency Analysis


U.S. Energy Information Administration

Overview

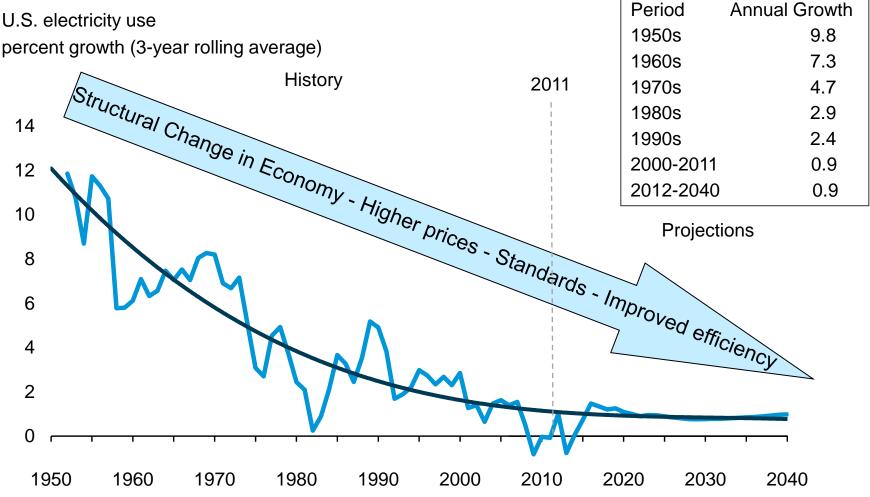
- NEMS Overview
- Load Curve Development in NEMS
- Policy analysis using NEMS the big picture
- End-use policy in the AEO2013 Reference case
- End-use analysis capabilities in the NEMS buildings sectors


National Energy Modeling System

Sources: EIA

Electricity market module

Sources: EIA



Electricity Load Curve Development in NEMS

Starting Curve	De	Final Curve		
Weather normalized	25 different end-use			
regional system load curves based on 2006- 2010 data with 864 time slices (24 hours X 3 day types X 12 months)	demands from residential, commercial, industrial and transportation models passed each year	Change in each end-use demand from base year is calculated	End-use demand "deltas" are mapped into 864 load curve slices	Apply "deltas" to system load curves to get adjusted system curves and aggregate to 9 time slices use in the model

Growth in electricity use slows, but still increases by 28% from 2012 to 2040

Source: EIA, Annual Energy Outlook 2013 Early Release

Policy Analysis with NEMS Renewable Fuels

Greenhouse Gas Cap and Trade Programs or GHG Fee Programs Renewable / Clean Energy Investment Tax Credits corporate Average Fuel

Production Tax Credits

J. Alan Beamon. Erin Boedecker. ORNL/Ga Tech, February 26, 2013

Portfolio Standards

Appliance Efficiency

Economy Standards

Standards Standards

Reference case end-use policy assumptions

NEMS policy representation from the enduse perspective

- Policy assumptions are implemented in all four NEMS enduse modules
 - Residential, commercial, industrial, and transportation
 - Alternative assumptions allow for policy analysis
- Current legislation & regulations directly represented
 - Energy efficiency codes & standards and incentives for renewable technologies
 - Industrial boiler MACT rulemaking and California cap-and-trade program
 - Light-duty and heavy-duty vehicle standards
- Policies represented in other sectors affect end-use demand
 - Renewable portfolio standards, renewable fuel standards
 - Regulations on emissions
 - Incentives

Buildings policy representation

- Equipment standards
 - Promulgated federal standards
 - Consensus agreements
- Building codes
 - States assumed to meet goals defined in ARRA by 2018
 - Residential: IECC 2009 or better
 - Commercial: ASHRAE 90.1-2007 or better
- Distributed generation and end-use renewable technologies
 - Investment tax credits for renewable technologies and combined heat and power (CHP) are modeled with 2016 expiration as specified in current law
 - Interconnection limitations for distributed generation (DG) decline over time

Industrial policy representation

- Investment tax credit for combined heat and power
- Motor efficiency standards
- Boiler Maximum Achievable Control Technology (MACT)
- California AB32 (GHG Cap & Trade)

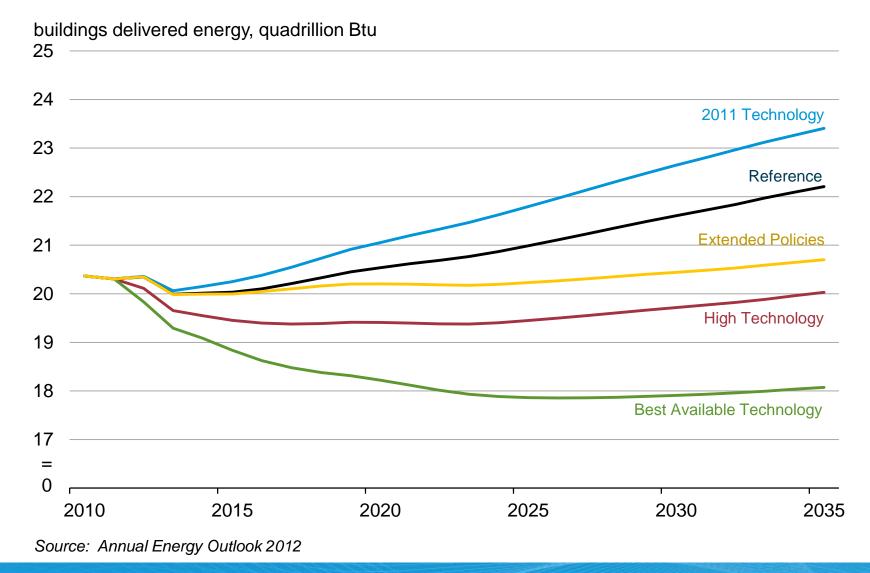
Transportation policy representation

- Tax credits for plug-in electric vehicles
- Light-duty vehicle GHG and CAFE standards, including credits
- Heavy-duty vehicle fuel efficiency and GHG standards
- Fleet alternative-fuel vehicle minimum sales requirement

End-use analysis capabilities in the NEMS buildings sectors

Many buildings assumptions can be changed for policy analysis through input files

- Degree day projections
- End-use technology characterizations
 - cost, performance, and availability parameters
 - additional technologies
- Residential shell parameters for new construction
- DG and CHP parameters
 - cost, performance, financing , and penetration parameters
 - tax incentives and depreciation treatment
 - RPS participation (in conjunction with power sector parameters)
 - program-driven installations
- Hurdle rates and technology/fuel switching propensity

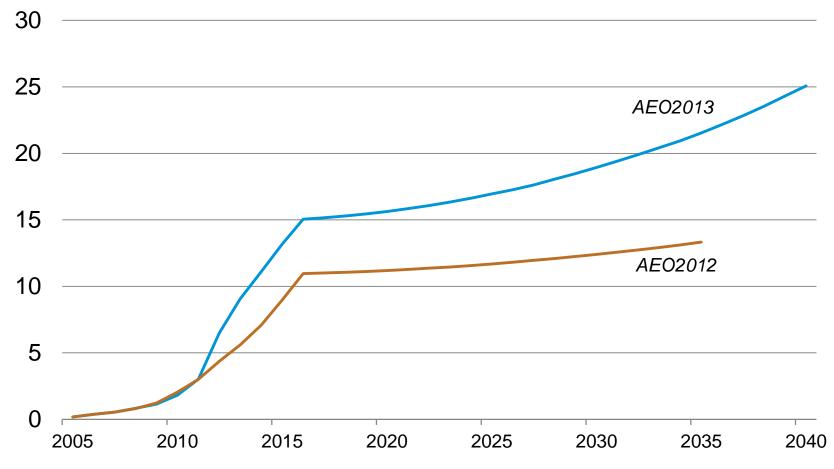


NEMS buildings technologies have the opportunity to "learn" in four ways

- Learning for conventional technologies is exogenously specified by technology "menus" that include availability of cost and performance improvements over time
- Costs for less mature technologies can decline from menu costs over time based on parameters for the total anticipated price reduction, and the rate of price decline
- Menu availability of technologies can be accelerated with a sustained substantial increase in fuel prices
- CHP and distributed generation include potential for endogenous "learning" with declining technology costs as shipments increase in addition to menu-driven improvement

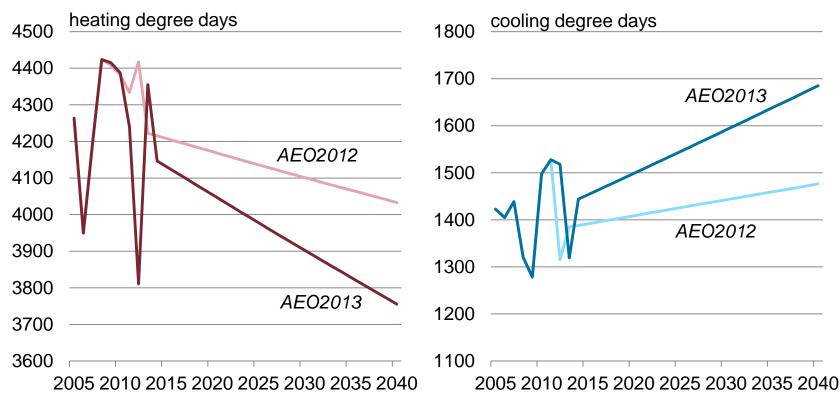
AEO2012 demand technology and analysis cases look at the impacts of alternative technology assumptions

eia


AEO2013 includes updated DG parameters to better reflect recent trends

- Photovoltaic (PV) system menu costs have been updated
 - 2010 system costs now based on Tracking the Sun IV (LBNL, 2011)
 - reduced future costs based on NREL bottom-up potential costs although 2020 costs not directly incorporated
- Residential systems now require 8 years of positive cash flow
- Penetration limit into existing commercial floorspace has increased to one-tenth of penetration into new construction (overall cap of 0.5% of existing floorspace/year unchanged)
- Program-driven commercial PV penetration has increased between 2011 and 2016

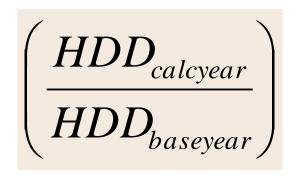
AEO2013 updates result in additional buildings PV capacity


generating capacity, GW

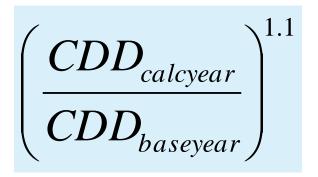
Source: EIA, Annual Energy Outlook 2013 Early Release, Annual Energy Outlook 2012

AEO2013 includes a 30-year historical trend for degree day projections

2005 - 2011 = history


2012 – 2013 = recent estimates of history + NOAA near-term forecast 2014 – beyond = EIA projection using 30-year historical trend + population shifts

Source: EIA, Annual Energy Outlook 2013 Early Release, Annual Energy Outlook 2012



Degree day projections affect residential and commercial heating and cooling loads

• Applied directly to energy consumption for heating

Cooling adjustment is non-linear

For more information

U.S. Energy Information Administration home page | <u>www.eia.gov</u>

Short-Term Energy Outlook | www.eia.gov/steo

Annual Energy Outlook | www.eia.gov/aeo

International Energy Outlook | www.eia.gov/ieo

Monthly Energy Review | <u>www.eia.gov/mer</u>

Today in Energy | <u>www.eia.gov/todayinenergy</u>

Supplemental slides

AEO2013 distributed PV "menu" characteristics

Year of Introductio	•	Generating bacity (kW _{DC})	Electrical Efficiency	Installed Capital Cost (2009\$ per kW _{DC})
Residential				
20	10	3.5	0.15	\$7,200
20	15	4	0.18	\$4,965
20	25	5	0.20	\$3,664
20	35	5	0.20	\$3,462
Commercial				
20	10	30	0.15	\$6,410
20	15	35	0.18	\$4,475
20	25	40	0.20	\$3,340
20	35	45	0.20	\$3,151

